866 research outputs found

    Empirical Modeling of Ducting Effects on a Mobile Microwave Link Over a Sea Surface

    Get PDF
    In this paper, signal enhancement due to the ducts over a sea surface is experimentally investigated and modeled. The investigation is carried out through the study of air-to-ground mobile microwave links over a tropical ocean with low airborne altitudes (0.37 - 1.83 km) at C band (5.7 GHz). The distance-dependence of the ducting induced enhancement (with reference to the free-space propagation) is linearly modeled, and the physical variations of the ducts are found to be Gaussian distributed. Empirical ducting coefficients and parameters for the Gaussian function are estimated and provided for the prediction of the distance-dependent signal enhancement due to the ducts in similar scenarios

    Detecting Rainfall Onset Using Sky Images

    Full text link
    Ground-based sky cameras (popularly known as Whole Sky Imagers) are increasingly used now-a-days for continuous monitoring of the atmosphere. These imagers have higher temporal and spatial resolutions compared to conventional satellite images. In this paper, we use ground-based sky cameras to detect the onset of rainfall. These images contain additional information about cloud coverage and movement and are therefore useful for accurate rainfall nowcast. We validate our results using rain gauge measurement recordings and achieve an accuracy of 89% for correct detection of rainfall onset.Comment: Accepted in Proc. TENCON 2016 - 2016 IEEE Region 10 Conferenc

    Correlating Satellite Cloud Cover with Sky Cameras

    Full text link
    The role of clouds is manifold in understanding the various events in the atmosphere, and also in studying the radiative balance of the earth. The conventional manner of such cloud analysis is performed mainly via satellite images. However, because of its low temporal- and spatial- resolutions, ground-based sky cameras are now getting popular. In this paper, we study the relation between the cloud cover obtained from MODIS images, with the coverage obtained from ground-based sky cameras. This will help us to better understand cloud formation in the atmosphere - both from satellite images and ground-based observations.Comment: Published in Proc. Progress In Electromagnetics Research Symposium (PIERS), 201
    corecore